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Abstract

This paper aims to address a class of nuclear
norm regularized least square (NNLS) problems.
By exploiting the underlying low-rank matrix
manifold structure, the problem with nuclear
norm regularization is cast to a Riemannian opti-
mization problem over matrix manifolds. Com-
pared with existing NNLS algorithms involving
singular value decomposition (SVD) of large-
scale matrices, our method achieves significant
reduction in computational complexity. More-
over, the uniqueness of matrix factorization can
be guaranteed by our Grassmannian manifold
method. In our solution, we first introduce the
bilateral factorization into the original NNLS
problem and convert it into a Grassmannian op-
timization problem by using a linearized tech-
nique. Then the conjugate gradient procedure on
the Grassmannian manifold is developed for our
method with a guarantee of local convergence.
Finally, our method can be extended to address
the graph regularized problem. Experimental re-
sults verified both the efficiency and effective-
ness of our method.

1 Introduction

In recent years, matrix approximation problems with nu-
clear norm regularization have occurred in many machine
learning and compressed sensing applications such as ma-
trix completion, matrix classification, multi-task learning
and dimensionality reduction [6]. In this paper, we con-
sider the following optimization problem over matrices:
coin - f(X) = g(X) + pll Xl )

where g(X) is any differentiable convex function (usually
called the loss function, e.g. g(X) = || A(X) — b||3, where
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A(+) is a linear operator), 1 > 0 is a regularization param-
eter, and || X || denotes the nuclear (or trace) norm of the
matrix X with rank r, that is, the [;-norm of the matrix
spectrum as || X ||, = >_7_, 0, where {o;} are the singular

values of X.

Most algorithms for solving the nuclear norm minimization
(NNM) problem (1) do not require the rank to be specified
and iteratively optimize the nuclear norm penalized prob-
lem. Naturally, the singular value decomposition (SVD)
tends to paly a critical computational role in the design
of various nuclear norm solvers, e.g., the singular value
thresholding (SVT) [5], soft-impute [14], accelerated prox-
imal gradient approach [9], and so on. Those algorithms in-
volving SVD and applying a soft-thresholding operator on
the singular values at each iteration suffer from high com-
putational cost of multiple SVDs [14, 15]. In particular, if
the iterations need to pass through a region where the spec-
trum is dense, those algorithms can become potentially be-
come prohibitively expensive [3]. Noticing that only those
singular values exceeding a threshold and their correspond-
ing singular vectors contribute to the soft-thresholding op-
erator, a commonly used strategy is to compute the partial
SVD instead of the full one, such as APGL [17] and IALM
[12] both use PROPACK [11]. However, it can compute
only a given number of largest singular values, and the soft-
thresholding operator requires the principal singular values
that are greater than a given threshold.

If the rank is known, a class of existing matrix factoriza-
tion algorithms [10, 4, 22, 15, 18] cast the low-rank matrix
estimation problem (1) as the following non-convex model,

min  ¢g(X), s.t., rank(X) = k. )

X eRmxn

Matrix factorization is arguably the most widely applied
method for the low-rank matrix completion problem, due
to its high accuracy, scalability and flexibility to incorpo-
rating side-information [19]. LMaFit [22] fixes the rank by
explicitly formulating the matrix as the product of its low-
rank factors and using an optimization technique based on
successive over-relaxation to solve (2). In [15] and [18],
two improved versions were proposed to optimize it on the



Grassmannian manifolds, and improve its convergence by
using conjugate gradients rather than the standard gradient
descent. Moreover, [10] proved that exact recovery can be
obtained with high probability by solving a non-convex op-
timization problem. In the model (2), the correct rank needs
to be known as a priori. Unfortunately, the determination
of the reduced rank is also an open problem, especially for
the noisy matrix estimation.

To address these key problems mentioned above, we pro-
pose an effective approximation method for solving nuclear
norm regularized least squares problems, which can reduce
the SVD computational cost. We achieve it by convert-
ing the original NNM problem into a Grassmannian op-
timization problem. In our framework, we use the nuclear
norm term to promote the robustness of the fixed-rank man-
ifold optimization problem with respect to the given rank,
in other words, to avoid the over-fitting problems of ma-
trix factorization. Moreover, we present an efficient conju-
gate gradient descent algorithm on the Grassmannian man-
ifolds with a guarantee of local convergence. Finally, our
method is also extended to address the graph regularized
problem. In summary, our method inherits the superiority
of two classes of frameworks, i.e., the NNM methods and
Riemannian manifold optimization methods based on ma-
trix factorizations.

2 Background

When choosing g(X) := 3||Pa(X) — Pa(Z)||3 for some
linear projection operators Pq(-), i.e., Po(X;;) = X;; if
(,7) € Q, and P (X;;) = 0 otherwise, the above formu-
lation (1) is the low-rank matrix completion (MC) problem.
The MC problem is to find out a matrix of the lowest rank
whose entries in the observed set €2 correspond to the en-
tries of Z:
1
min SIPa(X) = Pa(Z) [+ ul X @)

or the noiseless version,

min HXVH*7 s.t.,, Xqg =Zq. @)

XERmx*n
Recently, many low-complexity algorithms have emerged,
such as APGL [17], IALM [12], and FPCA [13]. Involving
SVDs in their each iteration, thus those algorithms based
on the soft-thresholding operator suffer from high compu-
tational cost. This limits the usage of the matrix completion
techniques in real-world applications.

Alternatively, low-rank matrix completion based on fixed-
rank matrix factorization has received a significant amount
of attention [15]. Suppose that the low-rank matrix X &
R™*™ with rank r is decomposed as X = UM, where U €
R™*" and M € R"*", LMaFit [22] applies a successive
over-relaxation iteration scheme to alternatively solve the

following least-squares problem,

S IUM)y = ZillP. )

(1,5)€Q

min min
UERWL Xr ]\/IE]RT‘X n

However, the factorization of the matrix X into the prod-
uct UM 1is not unique. Indeed, for any r-by-r invert-
ible matrix O, we have UM = (UO)(O~*M). Hence,
some researchers convert the matrix factorization problem
into some corresponding Riemannian manifold optimiza-
tion problems, such as OptSpace [10], RTRMC [4], Rie-
mannCG [18], and ScGrass [15]. However, in those algo-
rithms we need to know the exact rank which is usually dif-
ficult to obtain. Furthermore, they often suffer badly from
overfitting due to their least-squares loss functions, espe-
cially on noisy matrices.

2.1 Grassmannian Manifold

We will briefly recall the related notions of matrix mani-
folds (readers may refer to [2] for details).

Definition 1. Grassmannian manifold: The set of -
dimensional vector subspaces of R™ is defined as G, ;.
Each pointU € G, , can be presented by a generator ma-
trix U € ./\/mﬂ«, where ./\/,,M is the set of m X r matrices
with orthonormal columns, i.e., Np,, = {U € R™*" .
Ut = 1,}.

Definition 2. Tangent space: Consider an arbitrary point
on the Grassmannian manifold, U € G, .. To perform
differential calculus, the tangent space at U (the generator
matrix of U) is denoted as Ty Gy, . And the tangent space
is represented as Ty Gy, = {n € R™*" : UTy = 0}.

As the generalization of the standard optimization meth-
ods, some Riemannian manifold optimization methods can
be used for solving the following low-rank matrix learning
problem with the fixed rank r,

i U), 6

ymin f(U) (6)

where f(-) is a smooth function on Grassmannian mani-
folds.

2.2 Skeleton of CG Algorithms on Grassmannian
Manifolds

In general, the typical nonlinear conjugate gradient (CG)
algorithm on Grassmannian manifolds with a line-search
rule for the unconstrained optimization problem (6) is out-
lined in Algorithm 1, which we elaborate as follows.

e Ambient gradient: To obtain the Euclidean gradient
V f(Uy) in the ambient space.

e Riemannian gradient: It, denoted by gradf(Uy), is a
specific tangent vector 7, which corresponds to the



Algorithm 1 Geometric CG
Input: The fixed rank r and tol > 0.
Output: X =UM.
1: while not converged do
2:  Compute the ambient gradient: V f(Uy,).
3:  Compute the Grassmannian gradient:
grad f (Uy).
4:  Check convergence: ||grad f(Uy)|| < tol.
5.  Compute 35 by the PR+ updating rule,
and compute a conjugate direction &:
& = —gradf(Ur) + BrTv, 1 -0, Gmr (Ek—1)-
6. Find an appropriate step size t; and compute
U: U1 = Ry, (tes)-
7: end while

direction of steepest ascent of f(Uy), but is restricted
to only directions in the tangent space T, Gy, .

e The conjugate direction: It, denoted by &, €
Ty, Gm,r» is conjugate to the gradient, and requires
taking a linear combination of the Riemannian gra-
dient with the previous search direction £ _;. Since
&k—1 does not lie in Ty, G, r, it needs to be trans-
ported to 1y, Gr,r. This is done by a mapping
TUk,1—>ngm,r : TUk,lgm,r — TUk gm,rs the so-
called vector transport. In total, the conjugate direc-
tion & = —gradf(Ux) + BrTv,_,—»vw Gmr(Er—1)
can be computed by a variant of the classical Polak-
Ribiere (PR+) updating rule in the non-linear CG.

e Retraction: Because a tangent vector only gives a di-
rection but not the line search itself on the manifold,
a smooth mapping Ry, : Ty, Gm,r — Gm,r, named
as retraction, is needed to map tangent vectors to the
manifold. To retract the search direction &, with a
line-search step size t; back to the manifold is denoted
as: Upq1 = Ry, (thé)-

3 Grassmannian Optimization

3.1 Linearization Technique

As in [17], the problem (1) can be approximated iteratively
by minimizing the following linearized function,

LX) =pl[ X[« + 9(Xk) + (Vg(Xk), X — X)

1 @)
X = X3
+ 5o IX = Xill%,

where 7 > 0 is a proximal parameter. Without loss of gen-
erality, suppose d is an upper bound for rank(X) = r,
ie,r < d X € R™" is decomposed as X = UM,
where U € /\/’m’d and M € R¥>™_ Furthermore, the quo-
tient geometry (i.e., Grassmannian manifold) is used in our
paper to guarantee the uniqueness of matrix factorization.

Hence, U € /\/’m’d can be viewed as the generator ma-
trix of U € G,y q and is an orthonormal basis of U. With
UTU = I, we have || X ||, = || M]||.. Thus, the problem (7)
is rewritten in the following form

LU, M) = pl|M ||« +(Vg(UpMy), UM — Uy My,)

1 , ®
+9(Ur My,) + EHUM — U My ||

For solving the problem (8), then we formulate the follow-
ing subproblem at the k-th iteration,

kaMk (U7 M) =

min min
UEGm,a MERIXn

)
1
p || M|l + §||UM — Up My, + 7Vg(Ur My,)||%.

In the following, the problem (9) is equally converted into a
Grassmannian manifold optimization problem with respect
to U.

3.2 Objective Function on Grassmannian Manifolds

Similar to [4], we now derive the objective function on
Grassmannian manifolds. Given the variable U, comput-
ing the matrix M that minimizes ka M, 1S a nuclear norm
regularized least-squares problem. The mapping between
U and this (unique) optimal M, denoted by My, is given
by

UHMU:

. 1 9 (10)
arg min ;e gaxn U7 M|« + §||UM - Pl %,

where P, = UMy, — 7V g(Up M}, ). Following [5], we can
obtain a unique closed-form solution to the problem (10)
via the SVT operator,

My = SVT,, (U P), (11)

where SVT,.(4) := Udiag(max{oc — u7,0})V and
Udiag(c)V is the SVD of A. Substituting (11) into the

function fy;, ar, , then the cost function fy, ar,, 1 Grmr = R
on Grassmannian manifolds is given by

. 1
L foor, (U) i= pr||My ||« + §||UMU — Bll%-
(12)

3.3 Riemannian Gradient

For solving our problem (12), we first derive the formulas
for the Euclidean gradient of the cost function fy, a7, in
(12) at U. Using the chain rule, we have

d
Vo, (U) = @kaMk(U)
0 ~ 0 ~ d
:%kaMk(U7 My ) + Mkajwk(Uv MU)EMU,

13)



where fu ar, (U, M), fu,ar, (U) and the map My have
been defined in (9) (12) and (11), respectively. The
first term of (13), 57 kaA4k(U Myr), can be computed
eas11y~ To compute the second term in (13), i.e.,
%ﬂ]k (U, My) %MU, we will present the following
derivation using the singular value and singular subspace
perturbation theories.

3.3.1 Computation of Ambient Gradient

To compute the ambient gradient, we first introduce the fol-
lowing two definitions and give their property, respectively.
Definition 3. Subdifferential: Let Ons ka . (U, M) de-

note the subdifferential of the non-smooth function fu, nr,
(U, M) at M, then
O fooan, (UM) = prd| M| + (M —UTPy), (14)

where O|| - ||« denotes the subdifferential of the non-smooth
convex function || - «, and is a closed convex set. Specif-
ically, let M = UAV be the SVD of M € R¥™ then
O||M ||« is given by [5], i.e.,

oM. =

{(OV+W:UTW =

. (15)
0,WVT =0,|W|. <1},

where || - ||2 is a spectrum norm.

By Definition 3, we can obtain the following property.

Lemma 1. Let My be the solution of problem (10), My =
UAV be the SVD of My, and T = {W : UTw =
0,WV =0,||W|s <1}, then IW € F satisfies

ey fuurs, = {ur(W — W), W €T} (16)
Proof. Since My is a optimal solution, then the first-order
optimality condition of the problem (10) is given by,
0 € prd||Mylls + (My —U" Py). (17)
By (15), then IW eI satisfies
prOV + prW + (My —UTP) =0.  (18)

Furthermore, substituting (18) into the subdifferential in
(14), we have

Ot fuunn, = prdl| Myl + (My — U By)
={prOVT 4 yoW + M —UTP,, W e} (19)
={ur(W —W), W eT}.

This completes the proof. O

Definition 4. Directional Derivative: Let My =
SVT,.(UT Py), the directional derivative of the mapping
My at U along the direction H is defined as

My g =

TP
lim SVIu- (U +vH)" Py)
v—0 ol

— SVT,.(UTR,)  (20)

Furthermore, we give the following result by the singular
value and singular subspaces perturbation theorems.

Lemma 2. With the same notations as Lemma 1, then for
any matrix W € T', we have

(My g, W) =0. (21)

Proof. To prove the lemma, the classical perturbation the-
ory for singular value and singular subspaces problems is
introduced. We use the classical result of [20] that the
eigenvalues of a matrix which is an analytic function of
a single variable can always be numbered so that they are
each analytic functions of the variable. Using the relation-
ship between eigenvalues and singular values, it follows
that if the singular values of the matrix B = A + R,
where A and R are m X n matrices, denoted by o;(7v),i =
1,2,...,n, then

oi(y) =o; +7uiTRvi +0:(7),i=1,2,...n, (22)

where O;(7) is an infinitesimal of higher order than ~,
u; and v; are smgular vectors of A corresponding to Ti.
Let A = ULV +UYV and B = UZV+UZV
be the SVDs of A and B respectively, where Y =
diag(oy,...,0,) and ¥ = diag(o1(y),...,0s(7)) are s
largest singular values of A and B, respectively. U and
U denote the spaces of U and U, and V and V denote the
spaces of VandV, respectively. Then the classic theorem
on the perturbation of singular subspaces is due to [21],

VIIsin©@. 23 + || sin OV, V) 3

£ [ + [ £l

— 6 )
where By = BV — US = 7RV, By = BTU - VE =
YRTU, and ||sin ©(U,U)||% is a measure that is related
to the canonical angles between the subspace U/ and u.
Moreover, the gap ¢ is the distance between two sets
of singular values in ¥ = diag(oy,...,0,) and &' =

diag(os41,-..,0,) (Please see the details in [21]).

Let A:=U"P,,R:=H"P,, B:=A+~vR=UTP, +
yHTP,, 00 > ... > 0, > pur and 0,4, < put. By using
the result in (22) and the definition of the SVT operator
with v — 0, we have

(23)

SVT,. (U +~H)'P,) — SVT,.. (U P;)
=U(S — pr)V —U(E — pur)V 24
=T+ 15+ 0(7),
where T} = U(S—pr)V—U(S—p1)V, Ty = yUAV, the
i-th element of the diagonal matrix A is A; :ﬂiTH Tp.v;,

O() € R¥*™ and its all entries are infinitesimals of higher
order than .

By the singular subspace perturbation theory of in (23), the
subspace U — U, while v — 0, i.e., 3D1, such that U —



UD;. Similarly, 3Dy, such that V — V Dy, Thus, it is not
difficult to verify U = UD; + §1(y) and VT = VT Dy +
82(7)T, where 61(v) € R™*? and do(7y) € R¥*™, and all
of their entries are infinitesimals of the same order as +.
Then we have

(W,U(S = pr)V) = (OTWVT (S = pr))
=(DIU"WVT, (S - ur))

+(01(0) WV Dy, (S = pr))

+ (01 (7) W2 (y), (E — pr)),

(25)

where W is defined in (15), UTW = 0, WVT = 0, and
by (25), then
(W, Ty) = (W,U(E — ur)V) + (W,U(Z — pr)V)
= (6:1(7)TWa(v), (B — pr)).

Similarly, we have

(W, To) = (W,AUAV)

=(DTUTWVT AA) + (6TWVT Dy, vA)
+ (6T (V)W 2(7),7A)

=(67 (v)Wé2(7),7A).

Thus, we have

(W, Ty + T + O(v))

(W, My i) = limy_ 5

=0.

Thus, this completes the proof. O

Next we will compute the ambient gradient. Let V( €
%ﬁ]k (U, MU)%MU, by the chain rule of compos-
ite function, and substituting the result in Lemma 1 into the
chain rule, then 3(W — W) € I satisfies
Gj =W =W, My i),
i=1,2,....m, j=12,...,d,

where (;; denotes the element in the i-th row and the j-th

column of ¢, and M, 7.; is given by Definition 2, and the

direction H# € R™*4 is defined as

= 1 m=dandn =j,
(Y ), = 0 otherwise.
And by Lemma 2, then
Gj = (W =W, My z,)=0. (26)

Thus, we have

0 ~ d
mekMk (U, MU)wMU =0. 27

By (27), then the ambient gradient in (13) can be rewritten
as follows:

0 ~
Vfuem, (U) = @kaMk(Uv My)
= (UMy — Py)M{.

(28)

Note the above result implies that the function fy, as, (+) is
continuously differentiable.

3.3.2 Computation of Riemannian Gradient

Following [18], and (I —UU?T)U = 0, then the Grassman-
nian gradient of fi;, as, at U is given by

gradekMk (U) = (I - UUT)vakMk (U)

29
= -—(I-UU")P.M{. 29

3.4 Conjugate Gradient Iteration

In the part, we describe the nonlinear CG algorithm on the
Grassmannian manifold for solving the proposed model.
The main additional ingredient we need is vector trans-
port which is used to transport the old search direction to
the current point on the manifold, ie., Ty, , v, Gm,d :
Tv, 19m,d — Tu,Gm.a. The transport search direction
is then combined with the gradient at the current point,
e.g. by the Polak-Ribiere formula (see [2]), to derive the
new search direction. Vector transport can be defined us-
ing the Riemann connection, which in turn is defined based
on the Riemann metric [1]. In this paper, we will use the
canonical metric to derive vector transport when consider-
ing the natural quotient manifold structure of the Grass-
mannian manifold. Following [15], the previous search
direction &;_; at Up_; will be transported to Uy as
Tv, U Gm.a = (I — ULUL)€—1. Then the new search
direction is

& = —gradf(Ug) + BiTu, 1 —0pGmr(Ek—-1), (30)

where ), can be calculated by using the Polak-Ribiere for-
mula in [7].

Furthermore, U is updated by
U1 = R(Ux + teéx) = qf(Uy + tr&x),  31)

where qf(A) is used as a retraction operator, which is the Q
factor in the QR factorization of A, and the step size ty, is
obtained by the Armijo linear search rule [2].

To solve the Riemannian optimization subproblem (12) at
each iteration, we present a non-linear conjugate gradient
decent algorithm on Grassmannian manifolds. Overall, the
skeleton of our method is listed in Algorithm 2.

3.5 Convergence Analysis

In this part, we analyze the convergence of Algorithm 2
using the non-linear conjugate gradient descent scheme.



Algorithm 2 A Riemannian optimization framework for
solving the problem (12)

Input: The rank d, the parameters p, 7 and tol.
Output: X =UM.
1: while not converged do
2:  Formulate the cost function fy, ar, by (12).
3:  Compute the Grassmannian gradient by (29),
n, = grad fu, m, (Uk)
4:  Check convergence: 7 < tol.
Compute a conjugate direction & by (30).
6:  Find an appropriate step size ¢; using Armijo rule,
and compute Uy by (31).
7. Compute M1 by (11).
8: end while

bl

Lemma 3. Let g(X) = || A(X) — b||%, {(U, My)} be an
infinite sequence of iterates generated by Algorithm 2 with
the Armijo backtracking rule, and 7 € (0,1/p(AT A)),
where p(-) denotes the spectral radius operator, then we
have the following results:

() limg o || grad fu, a, (U) || = 0.

(II) hmk_mo ||Uk+1 - Uk” = 0, and

imysoo [[Uk+1 Mi1 — Up Mg || = 0.

Proof: The detailed proof can be found in the supplemen-
tary material.

Theorem 4. Let {(Uy, M)} be an infinite sequence of it-
erates generated by Algorithm 2. Then each accumulation
point of {(Ux, M)} is a critical point of the following op-
timization problem
1
i i M|« + =g(UM). 32
g min pr|[ M+ 59(UM). (32)
Proof: The detailed proof of the theorem can be found in
the the supplementary material.

3.6 Complexity Analysis

In this part, we discuss the time complexity of our method.
For the matrix completion problem (12), the main run-
ning time of our algorithm is consumed by performing
SVD for the SVT operator, some multiplications and re-
traction operator. The time complexity of performing the
SVT operator in (11) is O; := O(d?n). The time com-
plexity of some multiplication and retraction operators is
Oy := O(dmn + d*>m). The time complexity of perform-
ing retraction operator is O3 := O(d?m). Thus, the total
time complexity of our method is O(T'(O1 + O + O3)),
where T is the number of iterations.

4 Graph Regularization Extensions

In this paper, we mainly consider the problem of recover-
ing a noisy low-rank matrix from a few observed entries as

a matrix completion application of our nuclear norm regu-
larized least squares model. In addition, our method is quite
general, and can be easily extended to incorporate the con-
textual information, including social relations of users, so-
cial tags issued by users, movie genres, user demographic
information, etc. In order to incorporate the social network
information, our social network aided context-aware rec-
ommender model is formulated as follows:

. . 1
pBin | min f(U,M) := 3[[Pa(UM) — Pa(2)llz

A A
+ pl| M|, + Eltr(UTLUU) + gtr(MLMMT),
(33)

where tr(A) denotes the trace of the matrix A, Ly and Ly,
are the graph Laplacian matrices, i.e., Ly = Dy — Wy,
Wy is the weight matrix for the user set, and Dy is the di-
agonal matrix whose entries are column sums of Wy, i.e.,
(Dy)i = Zj(WU)Z-j, and \; > 0 and Ay > 0 are regular-
ization constants. It is not difficult to verify, for any matrix
O € N4, we have f(UO,O0T M) = f(U, M). Hence, the
Grassmannian manifold is also used in our social network
aided context-aware recommender model, and it is refor-
mulated as follows:

1
; 3 Pao(UM) — Po(Z 2F+u M|\«
uglglg,dMIeI%lé?XWQH f( ) a(Z)l 1]

A A
Jr?ltr(UTLUU) + ?Qtr(MLMMT),
(34)

where the column orthonormal matrix U is viewed as the
generator matrix of /. Moreover, Algorithm 2 can be ex-
tended to solve our graph regularized matrix completion
problem (34).

5 Experimental Results

In this section, we evaluate both the effectiveness and effi-
ciency of our method for solving matrix completion prob-
lems on both synthetic and real-world data.

5.1 Synthetic Data

The synthetic matrices Z € R™*™ with rank 7 in this
subsection are created randomly by the following proce-
dure: two random matrices U € R™*" and V' € R"*"
with i.i.d. standard Gaussian entries are first generated, and
then X = UV7 is assembled. Two test experiments are
conducted on random matrix without or with noise, where
the observed subset is corrupted by i.i.d. standard Gaus-
sian random variables as in [17]. In both cases, only 10%
observed entries are sampled uniformly at random as the
training set, and the remaining is used as the testing set.
Summaries of the computational results are presented in
Figure 1 on noiseless matrices of size 2000 x 2000 and
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Figure 1: The recovery accuracy on noiseless data vs. running time (seconds): training RMSE (left) and testing RMSE
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Figure 2: The recovery accuracy on noisy data (where the noise level nf = 0.001) vs. running time (seconds): training

RMSE (left) and testing RMSE (right).

Figure 2 on noisy matrices of size 2000 x 2000, respec-
tively.

We compare our method with APGL! [17], IALM? [12],
OptSpace3 [10], LMaFit* [22], and ScGrass® [15] on the
noiseless or noisy matrices, and illustrate the training and
testing recovery accuracies (RMSE) in Figures 1 and 2,
respectively, where APGL and IALM use the PROPACK
package [11] to compute a partial SVD. All the methods

"http://www.math.nus.edu.sg/-mattohkc/
NNLS.html
Mttp://www.cis.pku.edu.cn/faculty/
vision/zlin/zlin.htm
*http://web.engr.illinois.edu/~swoh/
software/optspace/
*nttp://lmafit.blogs.rice.edu/
Shttp://www-users.cs.umn.edu/~thango/

are implemented in Matlab and use mex files. In terms of
running time, the results show that for the noiseless data,
our method, LMaFit and ScGrass converge much faster
than the other three methods including APGL, IALM, and
OptSpace. However, for the noisy data, the testing RMSE
of LMaFit becomes worse due to overfitting while the train-
ing RMSE gradually decreases.

We also test the robustness of all these methods against the
noise, and demonstrate the experimental results (the testing
RMSE and running time) in Figure 3. It is clear that when
the noise level is higher, our method usually outperforms
the other methods in terms of the testing RMSE, that is, our
method has the good generation ability. With the increase
of the noise level, the running time of the other algorithms
dramatically grows except for our method and OptSpace.
In contrast, the runtime of our method increases slightly.
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Figure 3: The recovery results vs. the noise level: RMSE
(left) and running time (right).

5.2 Real-World Data

In order to evaluate our method, experiments were con-
ducted on three widely used recommendation systems data
sets®: MovieLens100K (ML-100K) with 100K ratings,
MovieLens1M (ML-1M) with 1M ratings, and Movie-
Lens10M (ML-10M) with 10M ratings. We randomly split
these three data sets to train and test sets such that the ra-
tio of the train set to test set is 9:1, and the experimental
results are reported over 20 independent runs. Except for
APG, TALM, OptSpace, and LMaFit, we also compare our
method with two state-of-the-art optimization methods on
manifolds: ScGrass and RTRMC’ [4]. For our method,
we set the rank d = 5,6,7, and u = 1072, The stopping
tolerance for all algorithms is set to ¢ = 10~%. All other
parameters are set to their default values for the algorithms
that we compare with. We also use the Root Mean Squared
Error (RMSE) as the evaluation measure.

The average RMSE on these three data sets is reported over
20 independent runs and is shown in Table 1. The results
show that for some fixed ranks, the matrix factorization
methods including OptSpace, ScGrass, RTRMC, LMaFit
and our method usually perform better than two nuclear
norm minimization methods including APGL and IALM.
As expected, our method with d = 5 on the MovieLens
(1M) data set achieved a RMSE of 0.8711, slightly outper-
forming the well-known restricted Boltzeman machines’s
RMSE of 0.8817 [16]. Moreover, our matrix factoriza-
tion method with nuclear norm regularization consistently
outperforms the other matrix factorization methods includ-
ing OptSpace, ScGrass, RTRMC and LMaFit, and the two
nuclear norm minimization methods including APGL and
IALM. This confirms that the proposed matrix factoriza-
tion model with nuclear norm regularization can avoid the
over-fitting problems of matrix factorization.

Furthermore, we also analyze the robustness of our method
with regard to its parameters: the given rank and the reg-
ularization parameter 1 on the MovieLens1M data set, as

®http://www.grouplens.org/node/73
"http://perso.uclouvain.be/nicolas.
boumal /RTRMC/

1 3
O— ScGrass —A— optspace
098f{ O LMaFit a —6—oOours
—6—ours S 257
g 2
8
uf
[
Z 15
L A A
o—b
05 -6 -4 2 0
10 15 10 10
Ranks Regularization parameter
(a) (b)

Figure 4: Results of our method with varying parameter
values on the MovieLens1M data set.

shown in Figure 4, from which we can see that our method
is robust against variations in its parameters. For com-
parison, we also show the results of two related meth-
ods: ScGrass and LMaFit with varying ranks in Figure
4(a). It is clear that, by increasing the number of the given
ranks, the RMSE of ScGrass and LMaFit becomes worse.
In contrast, the RMSE of our method increases slightly
when the number of the given ranks increases. This fur-
ther confirms that our matrix factorization model with nu-
clear norm regularization is effective and can avoid overfit-
ting. OptSpace also has a spectral regularization version:
ming g v (1/2)||Po(USVT — X)||% + u||S||%. From Fig-
ure 4(b), we observe that our method is much more robust
than OptSpace in terms of the regularization parameter .

Finally, we conduct the running time comparison of all
those algorithms on the MovieLens100K and Movie-
LenslM data sets, as shown in Figure 5. The experi-
ments were performed with Matlab 7.11 on an Intel Core
2 Duo (2.33 GHz) PC running Windows 7 with 2GB main
memory. From the results shown in Figure 5, we can ob-
serve that our method, ScGrass, RTRMC, and LMaFit are
much faster than the other three state-of-the-art algorithms
including APGL, IALM and OptSpace. For APGL and
IALM, SVD-related calculations essentially dominate their
total costs. Therefore, avoiding SVD-related calculations
on relative large-scale matrices is a main reason why our
method is much faster than the nuclear norm minimization
algorithms such as APGL and TALM, validating our orig-
inal motivation of solving the matrix factorization model
with nuclear norm regularization.

5.3 The Impact of Social Context

We also investigate the effects of social context on the
MovieLens100K data set, which is suitable to evaluate the
impacts of user demographic information and item genre
information because it consists of demographic informa-
tion (e.g. gender, age and occupation) of users and genre of
movies. According to [8], a two dimensional feature vector
is used to characterize the user’s gender, that is, if the user
is male, then the first feature is 1 while the second is 0, and
vice versa. The users are partitioned into 7 age group: 1-17,
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Table 1: RMSE of different methods on three data sets: MovieLLens 100K, MovieLens 1M, and MovieLens 10M.

Methods MovieLens (100K) MovieLens (1M) MovieLens (10M)
APGL 1.2142 1.1528 0.8637
TALM 1.2585 1.0153 0.8989
OptSpace 0.9411 0.9068 1.1357
Ranks 5 6 7 5 6 7 5 6 7
ScGrass 0.9236 0.9392 0.9411 || 0.8847 0.8846 0.8936 || 0.8359 0.8290 0.8247
RTRMC 0.9837 1.0617 1.1642 || 0.8901 0.8906 0.8977 || 0.8463 0.8442 0.8386
LMaFit 0.9468 0.9540 0.9568 || 0.8918 0.8920 0.8853 || 0.8576 0.8530 0.8423
Ours 0.9216 0.9243 0.9330 || 0.8711 0.8723 0.8738 || 0.8330 0.8261 0.8217
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Figure 5: Running time (seconds) for comparison on the
MovieLens100K and MovieLens1M data sets.

18-24, 25-34, 35-44, 45-49, 50-55, 56+. Then a seven di-
mensional feature vector is used to describe the user’s age
group. In addition, there are totally 21 occupations: admin-
istrator, doctor, educator, engineer, entertainment, execu-
tive, healthcare, homemaker, lawyer, librarian, marketing,
programmer, retired, salesman, scientist, student, techni-
cian, writer, other and none. Thus, a 21 dimensional feature
vector is used to describe the user’s occupation. In total, a
30 dimensional feature vector is achieved for user i. On
the other hand, there are 19 genres of movies. Likewise,
we use a 19 dimensional feature vector for movie j. We
evaluate the impact of user demographic and item genre
information on this data set with 60% and 90% training
sets, and we report in Fig. 6 the RMSE results yielded by
our method without graph regularization, with user or item
graph regularization and both graph regularizations. When
with the effect of the user demographic or the item genre
context, the performance of our method improves. For ex-
ample, compared with our method without graph regular-
ization, on average, our method with user or item graph
regularization have 0.35% and 1.04% relative performance
improvement in terms of RMSE, respectively. When with
the effects of both the user demographic and the item genre
context, our method obtains the best performance, suggest-
ing that the user demographic and the item genre context

Figure 6: The performance of variants of our method on
the the MovieLens100K data set.

contain complementary information to each other for rec-
ommendation.

6 Conclusions

In this paper, we proposed a Grassmannian manifold op-
timization method to tackle the nuclear norm regularized
least squares problems with a guarantee of local conver-
gence, such as the noisy matrix completion problem. Our
method inherits the superiority of two classes of methods,
i.e. soft thresholding approaches and hard thresholding ap-
proaches, and has good generation ability. In addition, our
method is extended to address the graph regularized prob-
lem. We demonstrated with convincing experimental re-
sults that our regularized formulation is effective, and our
method is robust to noise or against variations in its param-
eters.
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